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Elliptic representation of the Boltzmann equation with validity for all degrees of anisotropy

Edward A. Richley
4392 Silva Court, Palo Alto, California 94306

~Received 7 August 1998!

It is shown that by choosing an ellipsoid of revolution to describe the angular dependence of the velocity
distribution function, the Boltzmann equation can be reduced to a set of two equations that have validity over
a wide range of conditions. These equations reduce to the common two-term spherical harmonic expansion for
nearly isotropic cases, but also properly describe highly anisotropic conditions. An example is given of the
application of this approach to the Townsend discharge in helium over a very wide range ofE/N.
@S1063-651X~99!03704-6#

PACS number~s!: 51.10.1y, 51.50.1v
o

y

-

m
io
o
u
ti

is
fo
d

he
o

ff-
a-
ie
o

b
re
o

e-
a
h

ell
.
on
c
t
f

te

ion
x-

the
but

n
n
-
el-

de

1,
he
he
at

y,
y

the
wn
of
I. INTRODUCTION

The popular two-term spherical harmonic expansion
the Boltzmann equation@1–3# is very useful, but suffers
from some serious drawbacks as the magnitude of the as

metric component (fW1) grows relative to the symmetric com

ponent (f 0). In fact, once the magnitude offW1 exceeds that
of f 0 , the distribution function becomes negative at so
angles, and is thus nonphysical. Highly distorted distribut
functions cannot be properly represented by this meth
Furthermore, there is no mechanism in the resultant ang
moment equations for limiting the disparity of these quan
ties.

Example exist of higher-order implementations of th
type of expansion. For example, sixth-order solutions
some cases inN2 have been obtained by Pitchford an
Phelps@4# and again by Phelps and Pitchford@5# in which
comparisons are made with a two-term expansion. T
found that, at higher energies and fields, the inclusion
more terms made a significant difference. Similarly, Lo
hagen and Winkler@6# performed time-dependent calcul
tions for neon using as many eight terms, and found defic
cies with the two-term approximation in the early stages
relaxation.

At large anisotropy, beam formation has been studied
examining the Boltzmann equation at small angles with
spect to the field axis. Riemann@7# gives such an example t
first order in 12m, wherem is the direction cosine with the
field axis. Long@8# performs a similar analysis for the sp
cial case of constant, isotropic cross sections, and comp
this result with multiterm expansions of various order. Pitc
ford and Phelps@4# also found this approach to compare w
with their six-term solutions for cases of large anisotropy

Although the higher-order spherical harmonic expansi
have been studied and implemented, they require an ex
sive amount of computational effort in order to represen
fairly simple result. The distribution function in the limit o
ultimate distortion is simply ad function in some direction.
Similarly, the small-angle models are unable to accura
describe conditions of low anisotropy.

It would be very beneficial to find a simple representat
of a distribution function that is similar to the two-term e
pansion for low anisotropy, but can distort into ad function
PRE 591063-651X/99/59~4!/4533~9!/$15.00
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at large anisotropy. Such a representation would have all
desirable properties of the spherical harmonic expansion,
with proper asymptotic behavior at large anisotropy.

It will be shown that instead of expanding the distributio
function in spherical harmonics, an ellipsoid of revolutio
can be used to representf at any point of phase space. Analo
gous to the two-term spherical harmonic expansion, this
lipsoid can be described by two parameters~one scalar and
one vector! that are functions of position, and the magnitu
of velocity.

II. ASSUMED FORM OF THE DISTRIBUTION FUNCTION

Considering an ellipsoid of revolution, as shown in Fig.
the magnitude of the distribution function is taken to be t
length of a line extending from one focus to a point on t
surface. With one focus at the origin, it can be shown th

f 5
bA12g2

12gW •
vW
v

, ~1!

wheregW is a vector in the direction of the axis of symmetr
with magnitude equal to the eccentricity of the ellipsoid. B

FIG. 1. The surface of an ellipsoid of revolution describes
distribution function in three dimensions. The electric field is sho
for the general case in which it is not aligned with the axis
symmetry.
4533 ©1999 The American Physical Society
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its definition, 0,g,1. Both b andgW are functions of posi-
tion rW and velocity magnitudev.

Equation ~1! indicates that the elliptic representation
related to the two-term spherical harmonic expansion.
small values ofg, the fraction can be expanded in powers
g. Retaining only first-order terms gives the approximatio

f 'bS 11gW •
vW
v D ~2!

which is the two-term spherical harmonic expansion. F
smallg, the relation between the two representations is gi
by

f 0~v !5b~v !, fW1~v !5b~v !gW ~v !. ~3!

All corrections to this by the elliptic representation are
second order, or higher, ing. However, unlike the two-term
spherical harmonic expansion, the elliptic representatio
well behaved in the extreme cases for whichg⇒1.

In some sense, Eq.~1! can be thought of as a generaliz
tion of the asymptotic approach of Long@8# as given in the
Appendix of that work. However, unlike the present form
lation, that analysis was not meant to have validity for lo
energy, or for nonconstant, nonisotropic collision cross s
tions. As a result of approximations used in the derivation
that result, the solution does not reduce to a solution of
two-term spherical harmonic expansion for low energies
the limit of low anisotropy. Furthermore, that analysis w
not correctly represent the elastic regime of the distribut
function, as the elastic in-scattering term is not accura
represented. This can be seen from the derivation of the
isotropy parameter in that work which has a lower limit
the order of the square root of the ratio of inelastic to ela
cross sections. As shown by Riemann@7# in the discussion
surrounding his Eqs.~27!–~30!, this parameter should sca
as the square root of the ratio of energy loss to momen
loss frequencies. Thus, only in the inelastic regime will t
analysis of Long have validity at low anisotropy, and, as c
easily be shown, only then for energies much in excess of
mean energy gain between collisions divided by that sa
anisotropy parameter.

III. ANGULAR MOMENTS

With f given by Eq.~1!, the Boltzmann equation can b
integrated over all angles, so that two equations can be
tained to describe the evolution ofb and gW . In order to do
this, it is convenient to define new quantities formed by
tegration over all solid angles:

n~rW,v !5E
V

f dV5
2pbA12g2

g
lnS 11g

12g D , ~4!

GW 5E
V

vW
v

f dV5
2pbA12g2

g F1

g
lnS 11g

12g D22G ĝ, ~5!

and to define:

X5
uGW u
n

. ~6!
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In general, the necessary integrals are performed by lining
the axes withgW , a unit vector in the direction ofgW . The
anglesf andc are then as shown in Fig. 1, and the gene
angular moment is obtained by the integral:

bA12g2E
21

11E
0

2p F~vW !

12gx
dfdx, ~7!

wherex5cosc andF(vW ) is the function whose angular mo
ment is to be taken. Obviously,vW must be expressed in term
of v, f, andx.

The correspondence to the two-term spherical harmo
expansion for smallg can be determined by looking at th
first-order terms in Eqs.~4! and ~5!:

n⇒4pb~v !'4p f 0~v ! ~8!

and

GW ⇒ 4p

3
b~v !gĝ'

4p

3
fW 1 , ~9!

X⇒ g

3
. ~10!

Similarly, asg→1, it follows thatX→1 so that the mag-
nitude of G becomes equal ton as the highly anisotropicd
function is approached.

Beginning with the Boltzmann equation in its usual form

] f

]t
1vW •¹W f 2

qoEW

m
•¹W v f 5S d f

dt D
coll

, ~11!

the first moment equation is obtained by integrating o
solid anglesV and the second is obtained by multiplying b
vW , and then integrating overV. No assumption is made abou
the direction of the electric field with respect to the anis
ropy. Thus, the general case in whichĝ•EW ÞuEW u will be
treated.

Some shortcuts will be useful in evaluating these vario
integrals. The first is to define axes perpendicular toĝ. The
first such axis,ĝ' , is in the direction ofdĝ/dv

]ĝ

]v
5U]ĝ

]vUĝ' , ~12!

while the second new axis,ĝ'' is perpendicular to both:

ĝ''5ĝ3ĝ' . ~13!

With these definitions, some simplifications are imme
ate:

E
0

2p

vW df52pv coscĝ, ~14!

E
0

2p

vW vW df5pv2~3 cos2 c21!ĝĝ1pv2 sin2 cI9, ~15!

E
0

2p

cosfvW vW df5pv2 cosc sinc~ĝĝ'1ĝ'ĝ !, ~16!
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where

I95ĝĝ1ĝ'ĝ'1ĝ''ĝ'' ~17!

is the identity tensor.
The various terms are as follows:

E
V

vW •¹W f dV5¹W •E
V

f vW dV5¹W •~vGW !, ~18!

E
V

vW
v

~vW •¹W f !dV5¹W •E
V

f
vW vW
v

dV ~19!

5¹W •F nv
2G2 S 3X

g
21DGW GW G

1¹W Fnv
2 S 12

X

g D G ,
E

V
EW •¹v f dV5

1

v2

]

]v
~v2EW •GW !, ~20!

E
V

vW
v

~EW •¹W v f !dV5E
V

EW •~vW ¹W v f !dV

5
1

v3

]

]v F nv3

2G2 S 3X

g
21DEW •~GW GW !G

1EW H ]

]v Fn

2 S 12
X

g D G1
n

2v S 12
3X

g D J .

~21!

The moment equations are thus

]n

]t
1¹W •~vGW !2

qo

m

1

v2

]

]v
~v2EW •GW !5S dn

dt D
coll

, ~22!

]GW

]t
1¹W •Fnv

2 S 3X

g
21D ĝĝG1¹W Fnv

2 S 12
X

g D G
2

qo

m

1

v3

]

]v Fnv3

2 S 3X

g
21DEW •~ ĝĝ !G

2
qo

m
EW H ]

]v Fn

2 S 12
X

g D G1
n

2v S 12
3X

g D J
5S dGW

dt
D

coll

. ~23!

It is interesting to note that in the small distortion lim
Eq. ~10! forces some terms to vanish, and others to re
familiar limits. In particular,

S 3X

g
21D⇒0 ~24!

and

S 12
X

g D⇒ 2

3
. ~25!
h

These limits result in a replica~as they must! of the two-term
spherical harmonic expansion.

As g→1, the situation is different. In this case

S 3X

g
21D⇒2 ~26!

and

S 12
X

g D⇒0. ~27!

These limits serve to curtail further growth ofGW /n once it
reaches thed function limit of vĝ. The gradient terms, in
both configuration space and velocity, disappear in Eq.~23!
asg→1. In this limit, the left-hand side of Eq.~22! becomes

]n

]t
1v

]n

]z
2

qoEz

m

1

v2

]

]v
~v2n!, g→1, ~28!

wherez represents a coordinate in the direction ofĝ. This is
a purely advective operator. In fact, the left hand side ope
tors of Eqs.~22! and~23! become proportional to each othe
with a proportionality factor ofv. As long as the collision
terms do not permit further growth in the ratiouGW u/n, its
value will be limited. This is as one would expect for
highly distorted ellipsoid. Equation~28! is the elliptic repre-
sentation of the convection terms of a one-dimensional B
zmann equation.

In order to use the elliptic representation, it is necessar
invert the following relation:

X5
uGW u
n

5
1

g
2

2

lnS 11g

12g D . ~29!

This is analogous to, and a generalization of, the equa
given by Long@8# in that appendix, and again by Pitchfor
and Phelps@4# as their Eq.~27!. The relation must be in-
verted quite often and with quite good accuracy in order
obtain the proper convergence of the various terms in
equations. Clearly, some approximation is needed.
matching the first, third, and fifth powers in the Taylor e
pansion, and requiring proper behavior atX51 of bothg and
dg/dX, one can obtain the following polynomial ratio:

X

g
'

35192X2117X4

105124X2115X4 . ~30!

The functionX(g), along with the ratioX/g and its approxi-
mation, is shown in Fig. 2. BothX andg are constrained to
lie between21 and 1.

IV. ELECTRON-HEAVY PARTICLE COLLISION TERMS

The general collision term for electrons with heavy pa
ticles is well known@9#. For an elastic interaction, this i
written as
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S d f

dt D
c,el

5NvE
V8

F f ~v8m8!S v8

v D 4

qel~c,v8!

2 f ~v,m!qel~c,v !GdV8, ~31!

whereqel(f,v) is the differential cross section for the coll
sion with initial velocityv8, final velocityv8, and scattering
anglec.

Following the technique of the previous section, angu
moments can be taken of this collision term. Using the w
known geometric relations for scattering@9,10#, and taking
advantage of the azimuthal symmetry of the differen
cross section and the distribution function from Eq.~1!, one
obtains

S dn

dt D
c,el

5NvS v8

v D 4

sel,T~v8!n~v8!2Nvsel,T~v !n~v !

~32!

and

S dGW

dt
D

c,el

5NvS v8

v D 4

sel,P~v8!GW ~v8!2Nvsel,T~v !GW ~v !,

~33!

where

sel,T~v !52pE
0

p

qel~u,v !sinudu ~34!

is the total collision cross section, and

sel,P~v !5sel,T~v !2sel,M~v !

52pE
0

p

cosuqel~u,v !sinudu ~35!

has no common name, but can be described in term
sel,M(v), which is the momentum transfer cross section.

From Eqs.~32! and ~33! it can be seen that each is com
posed of a repopulation term and a depopulation term.
relative depopulation rates are identical. However, owing
the presence of cosu in Eq. ~35!, it will always be true that

FIG. 2. The relation betweeng andX, expressed in two differen
forms, along with the approximation of Eq.~30!.
r
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sel,P(v),sel,T(v). As uGW (v8)u→n(v8) it will thus be guar-
anteed that the relative repopulation term forGW will be less
than that forn. This will ensure that the collisional process
will prevent uGW u from growing to be greater thann, and is
consistent with the intuitive notion that collisions shou
only broaden the angular extent of the distribution functio
This property holds for the other types of collisions pr
sented below. Thus, provided that collision terms are pr
erly represented in the angular moment equations, collisio
processes will serve to suppress further growth inX as it
approaches unity.

For practical cases, approximations to the above te
can be made by the usual approach of taking the Ta
expansion off (v,m). This leads to the following relations
to first order indel52(m/M )

S dn

dt D
c,el

5N
1

2
del

1

v2

]

]v
~v4sel,M~v !n!

1N
1

2

1

v2

]

]v S delsel,M~v !v
kT

m

]n

]v D ~36!

and

S dGW

dt
D

c

52Nvsel,M~v !GW 1N
1

2
del

1

v2

]

]v
~v4sel,M

1 GW !,

~37!

where

sel,M
1 52pE

0

p

~12cosu!qel~u,v !cosu sinudu ~38!

and the effects of atom recoil onn(v) have been included
Although it is generally ignored,sel,M

1 should, strictly speak-
ing, be taken into account. For collisions in which forwa
scattering dominates,sel,M may become small enough tha
its effect onuGW u relative to the effect of the derivative term
on n may be questionable. The presence of the deriva
term in Eq. ~37!, however, removes this concern, assel,M

1

→sel,M in such cases. Thus, aside from the small contri
tion of the atom recoil term, Eqs.~36! and~37! become simi-
lar and, in fact, proportional asqel becomes more forward
peaked and, hence,X→1. However,sel,M is becoming so
small in these cases that other terms will generally domin
Furthermore,sel,M

1 is not generally available. The calcula
tions of the next section will show that quite a range
conditions can be evaluated by ignoringsel,M

1 altogether.
For inelastic collisions, similar arguments apply. The

sult for an excitation collision is

S dn

dt D
ex

5NvS v8

v D 2

sex,T~v8!n~v8!2Nvsex,T~v !n~v !

~39!

and

S dGW

dt
D

ex

5NvS v8

v D 2

sex,P~v8!GW ~v8!2Nvsex,T~v !GW ~v !,

~40!
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where

sex,T~v !52pE
0

p

qex~u,v !sinudu ~41!

and

sex,P~v !52pE
0

p

qex~u,v !cosu sinudu. ~42!

Once again, the precise form of the collision terms is su
that the diminishing effect onuGW u is greater than onn. Fur-
ther approximations can be made in order to simplify
equations, but these must be made carefully. For excita
energies that are large in comparison with a character
energy over which the distribution function changes grea
in magnitude, and for energies above the excitation ene
the depopulation terms will dominate, and it is appropriate
retain only those terms. At lower energies, the repopula
term can, of course, be significant in Eq.~39!. However, if at
the energies near threshold,qex is nearly isotropic, then
sel,P'0, and it is appropriate to ignore the repopulati
term in Eq. ~40!. At energies much above the excitatio
threshold, and where characteristic energies are much gr
than the excitation energy, all terms must be retained.
these energies, Altshuler@11# shows that a momentum tran
fer cross section can be defined as

sex,M~v !52pE
0

p

qex~u,v !~12cosu!sinudu ~43!

so that for these cases

S dGW

dt
D

ex

52Nvsex,M~v !GW ~v !. ~44!

In order to correctly account for the repopulation term wh
it is appropriate and to let it gracefully disappear at energ
near threshold, Riemann@7# has derived a simple cross se
tion based on the Thompson model for the inelastic mom
tum transfer cross section:

sex,M52

uuex ln
u

uex

u22uex
2 sex,T~v !, ~45!

whereu5mv2/2e is the electron energy, anduex is the ex-
citation energy. This form, when used with Eqs.~44! and
~39! is physically reasonable, and has been shown, comp
tionally, to be adequate.

Ionization collisions are similar to excitation collision
except for the creation of the new electron. Various a
proaches have been taken for the treatment of this elec
Margeneau@12# suggested that it share the resulting ene
with the incident electron after the collision. Although th
may be appropriate at low energies, it certainly is not at h
energies where forward scattering dominates. The other c
mon approach is to deposit all newly created electrons
energy zero, and to cope with the presence of ad function in
electron population there@13#. This latter approach will be
h
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used in the calculations of the next section. The ionizat
terms are then similar to excitation terms, and are

S dn

dt D
i

5NvS v8

v D 2

s i ,T~v8!n~v8!2Nvs i ,T~v !n~v !

1N
v i

4pv2 d~0!, ~46!

S dGW

dt
D

i

52Nvs i ,M~v !GW ~v !, ~47!

where

v i54pE
0

`

s i ,T~v !vn~v !v2dv, ~48!

s i ,T~v !52pE
0

p

qi~u,v !sinudu, ~49!

and

s i ,M52

uui ln
u

ui

u22ui
2 s i ,T~v !, ~50!

andui is the ionization energy.
It is important that whatever approximations are used

account for the collision processes, they must be chosen
self-consistent manner. A good discussion of these consi
ations can be found in Phelps and Pitchford@5#. For ex-
ample, any small-energy approximation for a moment
transfer cross section@Eq. ~43!# must be applied only in situ-
ations where the excitation energy~or ionization energy! is
small with respect to the characteristic energy. It has b
shown above that since all terms representing a given c
sional process are derived from the same differential cr
section, the relative diminishing effect onG will be greater
than that onn, as maximum anisotropy is approached. Th
property must be preserved in the approximations used,
to ensure the success of the elliptic representation, bu
order to correctly represent the physics.

V. APPLICATION TO A TOWNSEND DISCHARGE

The Townsend discharge provides an example for the
plication of the elliptic representation to a simple situatio
Following closely the analysis of Riemann@7#, a stationary
solution to the Boltzmann equation is sought in which
spatial dependency is assumed to vary aseaz, wherez is the
direction opposite the uniform applied field. With only on
spatial dimension,GW becomes a scalar quantity, and Eq
~22! and ~23! can be reduced to

]n

]t
1avG1F

1

v2

]

]v
~v2G!5S dn

dt D
coll

, ~51!
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]G

]t
1

aGv
g

1F
1

v2

]

]v Fv2
n

2 S 3X

g
21D G1F

]

]v Fn

2 S 12
X

g D G
5S dG

dt D
coll

, ~52!

whereF52eE/m.
Several observations can be made at this time. From

~51!, it is immediately obvious that the Townsend coefficie
a must satisfy the following relation in steady state:

a5

4pE
0

`S dn

dt D
coll

v2dv

4pE
0

`

Gv3dv
, ~53!

which is similar to Eq.~46! of Riemann@7#. Furthermore, in
the high-energy region in which collisional losses can
neglected altogether, Eq.~51! gives us

lim
v→`

G5
A

v2 e2~a/2F !v2
, ~54!

whereA is some arbitrary constant of proportionality. This
similar to Eq.~51! of @7#. It is also clear that, for sufficiently
high energy,G5n, so that for sufficiently highF/N,a/F
must tend to the limiting curve described by the followin
relation, derived from Eqs.~53! and ~54!:

S F

ND5E
0

`

s i ,T~v !ve2~1/2!~a/F !v2
dv. ~55!

This is identical to Eq.~54! of @7#. However, it can be ex-
pected that use of the elliptic representation will result
convergence to this limiting curve gracefully, and witho
the application of the limiting step of Eq.~53! in @7#. That
this is the case follows from the design of the elliptic rep
sentation in that it reduces to the equivalent one-dimensio
description under extreme distortion, and should not be
prising in light of the discussion surrounding Eq.~55! of @7#.

Some simplification can be obtained by changing the
dependent variable to total energyu and by definingh5vn
andG5v2G. Also, by defining a ‘‘energy velocity’’vu and
a ‘‘energy pressure’’Pu as follows:

vu5mFvX2Nudelsel,M~v !v, ~56!

Pu52uFS X

g Dh, ~57!

the equations become very similar to the equations for tim
dependent compressible gas flow. Using the approximat
to the collisions terms as described in Sec. IV, this yield
q.
t

e

t

-
al
r-

-

-
ns

]h

]t
1

]

]u
~vuh!5N

]

]u
S udelsel,MvkT

]S h

v D
]u

D 2aG

~58!

1N„h8sex,T~v8!v82hsex,T~v !v

1h8s i ,T~v8!v82hs i ,T~v !v

1Sid~0!… ~59!

and

]G

]t
52

]Pu

]u
2N@sel,M1sex,M1s i ,M#vG1S F2av2

X

g Dh

~60!

with

a5N
Si

E
0

`

Gdu

~61!

and

Si5
1

4p

m

e
v i5E

0

`

h~u!s i ,T~u!vdu. ~62!

With Eqs. ~58! and ~60!, a solution for the distribution
function in terms ofh and G can be found by solving the
time-dependent equations until the steady state is reac
These equations can be solved by the common techniq
used in the study of time-dependent reactive flow. The le
hand sides contain convection operators@in Eq. ~58!#, and
with zero velocity in Eq.~60!, while the right-hand sides
contain a diffusion term@in Eq. ~58!#, a pressure gradien
term @in Eq. ~60!#, and numerous collisional~reaction! and
body force terms. The solution scheme used here is base
the flux corrected transport method of Boris and Book@14#,
with fractional-step coupling to include the various sour
terms. The system is then advanced in time until the value
a has reached its asymptotic value.

Once convergence is obtained, it follows that the elect
drift velocity can be obtained by evaluation of the followin

vD5

E
0

`

Gv3dv

E
0

`

nv2dv
5

E
0

`

Gdu

E
0

`

hdu

. ~63!

Likewise, the average electron energy is determined
evaluation of

ū5

E
0

`

nuv2dv

E
0

`

nv2dv
5

E
0

`

hudu

E
0

`

hdu

. ~64!
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These equations have been integrated to steady-state c
tions in helium using the same cross sections as used
Riemann@7#. These cross sections exhibit the runaway c
dition in which the momentum transfer cross section
creases faster than 1/u. The results for these calculations a
shown in Figs. 3–6. Figure 3 shows the Townsend coe
cient, in the form of (a/E), along with the result of the
limiting case of Eq.~55!. The two curves are seen to com
together at values ofE/N which are very similar to tha
shown in Fig. 5 of@7#. This limit is approached smoothl
without any artificial limiting of the components of the di
tribution function, even though cross sections with rapid
crease beyond the runaway condition were used.

Figure 4 shows the drift velocity at various values
E/N, from which it can be seen that a sufficiently larg
extent ofE/N has been chosen that even the drift velocit
are becoming relativistic. At the upper end of this range,
Boltzmann equation would require modification. Also show
is the limiting curvevD5A(2/p)(F/a) derived from Eqs.
~54! and~63! with n5G. Similarly, Fig. 5 shows the averag
energy of the distribution function as a function ofE/N,
along with the limiting curveuav51/2(E/a). As with the
drift velocity, the energies in the range of highE/N are be-
coming quite large.

Figure 6 showsX(u) for two values ofE/N, showing
how X grows with energy for sufficiently low energy value
at which the Druyvesteyn-like behavior of the distributio
function causes increase with energy of the asymmetric
of the distribution relative to the symmetric part. In terms

FIG. 4. Drift velocity in helium found by the elliptic represen
tation, along with extreme result discussed in the text.

FIG. 3. Townsend ionization coefficient in helium showing d
tailed calculations and extreme result obtained from Eq.~55!.
di-
by
-
-

-

-

s
e

rt
f

the classical two-term spherical harmonic expansion,
represents the inevitable growth with energy of the ra
u fW1 / f 0u'uEl(1/f 0)(d f0 /du)u for any f 0 that has a tail fall-
ing faster than exponentially with energy. This growth
contained, however, by the effects of the elliptic represen
tion. Hence, the rate of rise ofX(u) at 10 Td is already
diminishing at 100 eV. At higherE/N, the bulk of the dis-
tribution function is highly directed, andX'1 over nearly
the entire range of relevant energies. These plots serv
show how the equations self-limit the growth of the ratio
anisotropic to isotropic components of the distribution, ev
in the presence of collision cross sections that fall off rapi
with energy.

VI. DISCUSSION

The similarity to the two-term spherical harmonic expa
sion must not be overlooked. In fact, by making the sub
tutions ofn54p f 0 andGW 5(4p/3) fW1 , one obtains from Eqs
~22! and ~23! exactly the two-term spherical harmonic e
pansion, provided that one makes the substitution

fWW25
5

4 S 3
X

g
21D ~3ĝĝ2I9 ! f 0 . ~65!

FIG. 5. Mean electron energy for a Townsend discharge in
lium as found by the elliptic model, along with extreme result d
cussed in the text.

FIG. 6. Plots ofX5uGW u/n vs energy~normalized! for two values
of E/N.
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Thus, the elliptic representation can be thought of as be
identically the two-term spherical harmonic expansion, w
closure of the hierarchy according to Eq.~65!.

fWW2 as defined above is a valid and reasonable represe
tion, as it satisfies several important requirements. It i
symmetric and traceless tensor, it must be~see, for example
Shkarofsky, Johnston, and Bachynski@3#!. Furthermore, the

ratio fWW2 / f 0 is second order inX. Riemann@7# explains that
this must be the case. His analysis is in terms of the quan
r5mv2Nqel /qE, and applies to regions of phase space
which anisotropy is not great and, hence,r@1. As 1/r→0
we also haveX→0, so that the order described by Riema
as

f n215O~r f n! ~66!

leads directly to the requirement thatf n must appear as
O(Xn) or, equivalently, asO(gn). That the elliptic represen
tation satisfies this requirement automatically becomes
dent by performing a Taylor expansion of Eq.~1!.

Although only the first three terms of the spherical h
monic expansion are ever actually used in the elliptic rep
sentation, the second-order nature of the closure of the h

archy provides a realistic approximation.fWW2 is highly
suppressed whenX is small, yet it reaches a magnitude
5 f 0 as X→1, as it must in order to represent the unidire
tional distribution.

Other approaches to this goal have been proposed. In
ticular, the maximum anisotropic approach of Baraff@15# is
based on the spherical harmonic expansion, and termin
the hierarchy by choosing the ratio of the highest term to t
of the next-to-highest term to be that corresponding to
description of ad function. Thus, for two terms, this would
yield f 25(5/3)f 0 . Although this approach has been seen
yield good results for some transport coefficients, it s
needs to include more than two terms in order to accura
represent the distribution function. This form of closure do
not satisfy the order of magnitude requirement of Eq.~66!,
and might be expected to yield incorrect results for situati
in which the bulk of the distribution has low anisotrop
especially when only a small number of terms is used.
particular, with only two terms, there would be present t
quantities of first order inX, and one might expect the func
tion f 1 so determined to be incorrect at low energies, as
terms in f 2 would be relatively significant. A possibly bette
approximate closure would be simplyf 255X2f 0

55/9(f 1
2/ f 0), which is of second order and reaches the c

rect limit at unit eccentricity. A comparison of these vario
closures is shown in Fig. 7.
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VII. SUMMARY

It has been shown that an alternative to the two-te
spherical harmonic approximation can be derived that exh
its a smooth transition to a description of a highly distort
distribution function. This transition can be treated at t
expense of only a slight increase in computational compl
ity. Furthermore, the framework of a traditional reactive flo
transport description can be retained. It is expected that
analysis of situations which simultaneously exhibit bo
highly isotropic and highly anisotropic distributions will ben
efit from this approach.

An example calculation for a Townsend discharge in h
lium has been given. The results correspond to that of
two-term spherical harmonic expansion at lowE/N, and to
the theoretical limiting case derived by Riemann@7# at high
E/N. The suppression of theu-gradient term in the aniso
tropic equation at high energies leads to a condition in wh
the isotropic and anisotropic portions are forced to follow t
same equation. This leads to nearly unit eccentricity for s
situations, showing that the formation of a beam is ac
rately represented. Using a time-dependent solution te
nique results were obtained over a very wide range ofE/N,
using realistic cross sections.
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FIG. 7. Plot of the closure of the hierarchy of the two-ter
spherical harmonic expansion according to the usual closuref 2

50), the maximum anisotropic closure of Baraff (f 25(5/3)f 1),
and the elliptic representation@Eq. ~65!#. Also shown is the approxi-
mation 5X2.
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